Radiochemistry for NIF Implosion Diagnostics

Charles Cerjan
NIF Workshop on Nuclear Astrophysics
August 28, 2007

Acknowledgments

Lee Bernstein, Rob Hoffman, Ken Moody, Dawn Shaughnessy, Mark Stoyer Rollin Harding, Chris Werner, George Zimmerman

Outline

- Brief review of indirect drive Point Design implosion characteristics.
- Examination of one specific, potential failure mode X-ray drive asymmetry.
 - Success and failure implosion output comparison
 - Refractory material tracers Ir and Sc
 - Charged particle reactions 18O(α,n)21Ne and 79Br(d,2n)79Kr as diagnostics
- Preliminary conclusions
 - Viable diagnostic signatures for asymmetric failure modes
 - Hydrodynamic instability signature but detectability issues remain

The basic requirements for ICF igntion are quite straight forward

Laser driven high-z hohlraum

Capsule with Low-z Ablator for efficient absorption

Cryogenic fuel for efficient compression

Cold, dense main fuel (~1000 g/cm³ with pr = 1-2 g/cm³)

Hot spot (10 keV with pr = 0.2-0.3 g/cm³)

Efficient x-ray production and symmetry adequate for a near spherical implosion

Spherical ablation to achieve high implosion velocity while suppressing instability growth

Near spherical collapse of the shell to produce a central hot spot surrounded by cold, dense main fuel

The NIF point design has a graded-doped, beryllium capsule in a U_{0.75}Au_{.25} hohlraum driven at 300 eV

5

Ignition Campaign Overview

- Both hohlraum and capsule designs are carefully optimized with constraints imposed by laser drive performance.
- Separate pre-ignition experimental campaigns will isolate and resolve the major technical difficulties expected.
 - Laser-plasma interactions
 - Capsule performance
 - Laser-hohlraum issues
 - Laser pulse shaping/shock timing
- If the optimized, integrated configuration does not achieve ignition, failure diagnosis and recovery will be essential.

Failure Mode Diagnostics

- Reliable, robust ignition diagnostics will be necessary to distinguish among possible failure modes.
 - Neutron time-of-flight
 - X-ray backlighting (ARC)
 - X-ray self-emission
 - X-ray and γ bang time
 - Neutron imaging
- Determination of excessive cold shell material mixing into the DT region remains a difficult problem.
 - Radiochemical tracer techniques?
 - Refractory or gas products?

Radiochemistry for Failure Modes

Motivation

- Purported advantages include inherent sensitivity to burn time conditions, energy-downscattered flux, and multiple "lines of sight".
- Investigate the feasibility of radiochemical tracers for failure mode signatures, especially asymmetric x-ray drive and mix.

Methodology

- Two-dimensional radiation-hydrodynamic simulations based upon the optimized Point Design capsule and x-ray drive.
- Asymmetric drive failure modeled by varying the modal content of the optimal drive – typically a Legendre mode present in the drive.
- Hydrodynamic instabilities induced by increasing the shell roughness beyond its specified limits.
- Tracer materials (uniformly) loaded into the innermost shell region for maximal particle exposure.
- Post-process to obtain product/(loaded tracer) ratios that might usefully distinguish among failure modes.

Single Shell Point Design

Anatomy of a Failure

- A common feature of failed (non-igniting) implosions is the relatively high time-averaged ρ -r since rapid expansion of the shell is suppressed.
- Differences in dense material distribution and hot spot geometry will affect tracer nuclear reactions.
- In the following example, the P₄ Legendre mode present in the drive was increased until the capsule performance was degraded to a yield of 1 MJ. This yield threshold, though not optimal, is still considered to be successful.
- A "hard" failure was also simulated by increasing the mode's amplitude by a factor of 1.5 producing yields in the range 50-100 kJ.

Negative
$$P_4$$

 $t_{peak} - t_{fwhm}/2$

Material Density

Failure

1 MJ

Negative P₄
t_{peak}

Material Density

Failure

1 MJ

Negative
$$P_4$$
 $t_{peak} + t_{fwhm}/2$

Material Density

Failure

1 MJ

Negative P₄ Output Comparison

	Failure	Success
Yield (MJ)	0.048	3.42
N _{fraction} (E < 10 MeV)	0.181	0.095
N _{fraction} (6 < E < 10 MeV)	0.058	0.030
NeutronNumber (12 < E < 17 MeV)	1.41E+16	1.11E+18
$N_{fraction}$ $(22 < E MeV)$	2.2E-5	1.9E-5
Total Neutron Number	1.76E+16	1.25E+18
ρ-R (time-weighted) (gm/cm²)	0.94	0.58
γ fwhm (psec)	74	38
T _{ion} (keV)	5.5	16.7
Peak Offset (psec)	-35	26

Negative P₄/Ir-Loaded

Ir Loading Example

- Natural abundance ^{191,193}Ir loaded into the innermost region of the ablator shell.
- Determine reaction products based upon a given cross-section network for different asymmetric drives.
- Example: ¹⁹⁴Ir
 - 1.45E+09 atoms produced for 3.42 MJ conditions (A₁)
 - 6.04E+07 atoms produced for 48 kJ conditions (A₂)
 - Scale the product atom numbers by the yields

$$(A_1/N_1) * (N_2/A_2) = (A_1/A_2) * (N_2/N_1) \approx (A_1/A_2) * (Y_2/Y_1)$$

In this case, there is a relative ratio of 3.37 which is a clearly measurable difference between the different drive conditions. The number of atoms is also acceptably large for detection.

Charged Particle Diagnostics/Asymmetric Drive

- Simplicity of inert gas collection on the NIF motivates the selection of these tracers.
- Detectable signals from both ²¹Ne and ¹²⁷Xe.
- Evaluate the atom number ratios scaled by the yield
 - Ne atoms in high and low yield cases:

$$4.66E+9$$
 $2.64E+6$ $(A_1/A_2)*(Y_2/Y_1) = 24.8$

- ¹²⁷Xe atoms in low and high yield cases:

$$4.28E+8$$
 $1.32E+6$
$$(A_1/A_2)*(Y_2/Y_1) = 4.55$$

Negative P₄ ²¹Ne Evolution

Density

²¹Ne Abundance

t_{peak} (psec)

Negative P₄ ²¹Ne Evolution

Density

²¹Ne Abundance

 $t_{peak}+100 (psec)$

Ice Roughness/18O-Loaded

Post-processing produces reaction product abundances

Charged Particle Diagnostics/Ice Roughness

- Detectable signals from ²¹Ne, ⁷⁹Br, and ¹²⁷Xe.
- Product/loaded ratio defined as before.
- Factor of 2 for Ne/O ratio; large factors for Kr/Br and Xe/I ratios.
- Ratios are favorable but overall number of reaction products might be marginally detectable number of atoms less than 1.0E+6.

	Ratio
²¹ Ne/ ¹⁸ O	1.94
⁷⁹ Kr/ ⁷⁹ Br	94.1
¹²⁷ Xe/ ¹²⁷ I	82.8

Ice Roughness ²¹Ne Evolution Failure

Density

²¹Ne Abundance

t_{peak} -193 (psec)

Ice Roughness ²¹Ne Evolution Failure

Density

²¹Ne Abundance

 $t_{peak} + 70 (psec)$

Preliminary Conclusions

- Most extensively studied modes to date are laser drive asymmetries.
 - Sc and Ir have robust, measurable signals and differentiate cases.
 - Near-term collection will include gas handling.
 - Ne, Br and Xe have large, measurable signals.
- Low and high mode instabilities are under investigation.
 - Clear differences in isotopic ratios but absolute abundances are at the detection threshold.